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Abstract. Lie bialgebra structures one(2) are classified. For two Lie bialgebra structures which
are not coboundaries (i.e. those which are not determined by a classicalr-matrix) we solve the
cocycle condition, find the Lie–Poisson brackets and obtain quantum group relations. There
is one to one correspondence between Lie bialgebra structures one(2) and possible quantum
deformations ofU(e(2)) andE(2).

1. Introduction

Quantum deformations [1, 2] of theD = 2 Euclidean groupE(2) and its universal
enveloping algebraU(e(2)) turn out to be a useful laboratory for the study of various
aspects of quantum groups [3–5]. It is one of the simplest examples of non-simple Lie
group and there is no canonical way to introduce its deformation. During the last five years
many approaches have been developed [6, 7] for the construction of such deformations.
The study ofEq(2) is interesting for its own sake (one can ask questions about how many
different quantum deformations exist in this case, about classicalr and quantumR matrices,
differential calculi, representations, bicrossproduct structures, etc), but it is also useful in
order to understand properties of quantum deformations ofD = 4 Poincaŕe group [8]. The
structure ofD = 4 quantum groups are important to explore if one wishes to examine
possible implications of quantum groups ideas in physics. Interesting results have recently
been obtained in this direction, including a classification of possible deformations of the
D = 4 Poincaŕe group [9].

The aim of this paper is to argue that all the possible quantum deformations ofE(2) can
be deduced from the analysis of Lie bialgebra structures one(2). The paper is organized as
follows. In section 2 we review obtained so far in the literature quantum deformations of
E(2) andU(e(2)). In section 3 we present the classification of the Lie bialgebra structures
for e(2). We obtain one one-parameter family of Lie bialgebra structures and three separate
‘points’. Some of them turn out to be coboundaries (i.e. they are determined by classical
r-matrices) but some are not of that kind. We show that quantum deformations described in
section 2 give rise to all of them, except for one case. The missing quantum deformation of
E(2) turns out to be the simplest one, and will be discussed in section 4. There we describe
in detail how to derive Lie–Poisson brackets corresponding to Lie bialgebra structures
which are not coboundaries. In the new case of Lie Poisson brackets that have not yet
appeared in the literature, we obtain quantum group relations by changing Poisson brackets
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into commutators. We also calculate by duality the corresponding quantum deformation of
U(e(2)). In section 5 we conclude the paper with some final remarks.

In our presentation we will concentrate on the algebra and coalgebra structures ofEq(2)

andUq(e(2)). It is a trivial exercise to guess what form of antipode and counit make them
Hopf algebras.

2. Quantum deformations ofE(2) and U (e(2))

The first papers of interest were dedicated to quantum deformations of the enveloping algebra
U(e(2)) [3]. These deformations were obtained by applying the technique of contraction
from the standard deformation ofU(sl(2)). It turns out that there are two different quantum
contractions [10]:

(A) [P+, P−] = 0 [J, P±] = ±P± (1)

1(J ) = J ⊗ 1 + 1 ⊗ J (2)

1(P±) = P± ⊗ qJ + q−J ⊗ P± (3)

(B) [P1, P2] = 0 [J, P1] = iP2 (4)

[J, P2] = − iκ

2
sh

2P1

κ
(5)

1(J ) = J ⊗ e−P1/κ + eP1/κ ⊗ J (6)

1(P1) = P1 ⊗ 1 + 1 ⊗ P1 (7)

1(P2) = P2 ⊗ e−P1/κ + eP1/κ ⊗ P2 . (8)

The deformation parameters areq in case (A) andκ in case (B) and the classical limits
are q → 1 andκ → ∞. It should perhaps be mentioned that till now there has been no
general theory of contractions of quantum groups. Some recent papers [11, 12] investigate
such contractions by analysing the Lie bialgebra level.

The quantum groupEq(2) has been discussed by many authors from different points of
view [3–6]. In order to fix notation let us introduce the following matrix representation of
elements ofE(2):

g(c, a, b) =
 cos(c) sin(c) a

− sin(c) cos(c) b

0 0 1

 . (9)

The matrix multiplication defines coproduct and antipode fora, b andc. It turns out to be
convenient to introduce the complex notation

η = a + ib η̄ = a − ib eic . (10)

The coproducts take the form

1(η) = e−ic ⊗ η + η ⊗ 1 (11)

1(η̄) = eic ⊗ η̄ + η̄ ⊗ 1 (12)

1(eic) = eic ⊗ eic . (13)
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There are many approaches for obtaining the quantum group relations forE(2) [4–7]. They
lead to two sets of relations:

(A′) ηη̄ = q2η̄η (14)

ηeic = q2eicη (15)

η̄eic = q2eicη̄ (16)

or

(B′) [eic, η] = 1

κ
(1 − eic) (17)

[eic, η̄] = 1

κ
(e2ic − eic) (18)

[η, η̄] = 1

κ
(η̄ + η) . (19)

The coproducts forη, η̄ and eic are given in (11)–(13).
It should be mentioned that the full Hopf algebra duality has been demonstrated for two

deformations of the groupsE(2) andU(e(2)) so far discussed. For case (A) and (A′) this
was done in [5] and for case (B) and (B′) in [6].

There is yet another approach to the quantization ofE(2). The starting point is the
non-standard (sometimes called Jordanian) quantum deformation ofU(sl(2)). Following
the general ideas it is possible to perform the contraction fromUq(sl(2)) to Uµ(e(2)) [13].
The new deformation parameter is calledµ.

(C) [P+, P−] = 0 [J, P+] = µ sh
P+
µ

(20)

[J, P−] = −P− ch
P+
µ

(21)

1(P+) = P+ ⊗ 1 + 1 ⊗ P+ (22)

1(J ) = J ⊗ eP+/µ + e−P+/µ ⊗ J (23)

1(P−) = P− ⊗ eP+/µ + e−P+/µ ⊗ P− . (24)

The bad feature of this deformation ofU(e(2)) is that it is strictly speaking a deformation
of the complex algebrae(2). This is seen in equations (20)–(24). The operationJ ∗ = J ,
P ∗

± = P∓ is not a star operation in the Hopf algebraUµ(e(2)).

3. Classification of Lie algebra structures fore(2)

It is possible to give a complete classification of Lie bialgebra structures fore(2). Let us
introduce thee(2) Lie algebra with generatorsP1, P2 andJ satisfying the relations

[P1, P2] = 0 [J, P1] = iP2 [J, P2] = −iP1 . (25)

In the classification of Lie-bialgebra structures fore(2) one should take into
account its invariance under the following transformations: (i)J → J + µP1 + νP2;
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(ii) P1 → cosβP1 + sinβP2, P2 → − sinβP1 + cosβP2; (iii) P1 → λP1, P2 → λP2. The
complete list of Lie bialgebra structures consists of

δ1(P1) = sP1 ∧ J δ1(P2) = sP2 ∧ J δ1(J ) = 0 (26)

δ2(J ) = P1 ∧ P2 δ2(P1) = δ2(P2) = 0 (27)

δ3(P2) = P1 ∧ P2 δ3(J ) = P1 ∧ J δ3(P1) = 0 (28)

δ4(P1) = −iP1 ∧ P2 δ4(P2) = P1 ∧ P2 δ4(J ) = P1 ∧ J + iP2 ∧ J . (29)

In (26) there is a one-parameter (s) family of Lie bialgebras. Of the above four possibilities
only the last two are coboundaries with the classicalr-matrices

r3 = J ∧ P2 (30)

r4 = J ∧ P1 + iJ ∧ P2 . (31)

One could also write down a more general form of the classicalr-matrices by adding
termsτP1 ∧ P2 + γ (P1 ⊗ P1 + P2 ⊗ P2). This generalization will however turn out to be
inessential if one deduces the form of Lie–Poisson brackets out ofr. We find two Lie
bialgebra structures which are not a coboundary. It is interesting to stress that the case
of D = 2 is very particular one. It was shown that forD > 3 all the Lie bialgebra
structures of homogeneous groups built from space-time rotations (with arbitrary signature)
and translations are coboundaries [14].

It is easy to observe that the deformation (A) of section 2 corresponds toδ1, (B) to δ3

and (C) toδ4. On the other hand, the Lie bialgebraδ2 does not yet have its quantum group
counterpart.

4. The missing quantum deformation ofE(2)

When a Lie bialgebra is not a coboundary the computation of Lie–Poisson brackets is not
straightforward. The problem is to solve the cocycle equation forφ : G → G ∧ G, where
G andG respectively denote the Lie group and its Lie algebra [15]:

φ(gh) = φ(g) + gφ(h)g−1 . (32)

Let us first discuss the case of the Lie bialgebra structureδ1. The ‘initial’ conditions are

φ(1 + εP1 + · · ·) = εsP1 ∧ J + · · · (33)

φ(1 + εP2 + · · ·) = εsP2 ∧ J + · · · (34)

φ(1 + εJ + · · ·) = 0 (35)

whereε is an infinitesimal parameter.
It is understood that the elements ofe(2) andE(2) are given in the three-dimensional

representation, and that

P1 = i

 0 0 1

0 0 0

0 0 0

 P2 = i

 0 0 0

0 0 1

0 0 0

 J = i

 0 −1 0

1 0 0

0 0 0

 . (36)

The strategy is to find firstφ on 1-parameter subgroups generated byP1, P2 andJ . Let

φ(e−iaP1) = A(a)P1 ∧ J + B(a)P2 ∧ J + C(a)P1 ∧ P2 . (37)
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The cocycle equation (32) gives rise to the following set of algebraic equations:

2A(a) = A(2a) (38)

2B(a) = B(2a) (39)

2C(a) − aA(a) = C(2a) . (40)

We assume further that the functionsA(a), B(a) and C(a) are analytic ina. Taking into
account (33) one obtains

φ(e−iaP1) = is

(
−aP1 ∧ J + a2

2
P1 ∧ P2

)
. (41)

Using the same methods one also calculates

φ(e−ibP2) = is

(
−bP2 ∧ J + b2

2
P1 ∧ P2

)
(42)

φ(eicJ ) = 0 . (43)

The group elements ofE(2) can be parametrized by

g(a, b, c) = e−iaP1e−ibP2eicJ =
 cosc sinc a

− sinc cosc b

0 0 1

 (44)

for which, using (32), one calculates

φ(g(a, b, c)) = is

(
−aP1 ∧ J − bP2 ∧ J + a2 + b2

2
P1 ∧ P2

)
. (45)

Since one knows from the general theory [15] that

{f, g} = φab∂af ∂bg (46)

the Lie–Poisson brackets fora, b, c follow:

{a, b} = is

2
(a2 + b2) (47)

{a, cosc} = ias sinc (48)

{b, cosc} = ibs sinc (49)

or, in complex notation

{η, η̄} = sηη̄ (50)

{η, eic} = sηeic (51)

{η̄, eic} = sη̄eic . (52)

These expressions should be compared with (14)–(16).
Let us apply the same method to the second non-coboundary Lie bialgebra structureδ2:

δ2(J ) = P1 ∧ P2 δ2(P1) = δ2(P2) = 0 . (53)

Using the above-described technique once more one obtains

φ(g(a, b, c)) = icP1 ∧ P2 . (54)
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After calculating Lie–Poisson brackets it turns out that the only non-vanishing bracket is

{η, η̄} = −2c . (55)

One can check explicitly that it in fact satisfies the required condition

{1(η), 1(η̄)} = 1({η, η̄}) = 1(−2c) = −2(c ⊗ 1 + 1 ⊗ c) . (56)

Naive quantization seems to be applicable in this case, so that for the quantum relations
one obtains

[η, η̄] = ihc [η, c] = [η̄, c] = 0 (57)

where byh we denote the deformation (quantization) parameter. It is instructive to find by
duality the corresponding quantum deformation ofU(e(2)). After brief computations one
arrives at the following structure:

(D) [J, P1] = iP2 [J, P2] = −iP1 [P1, P2] = 0 (58)

1(P1) = P1 ⊗ 1 + 1 ⊗ P1 1(P2) = P2 ⊗ 1 + 1 ⊗ P2 (59)

1(J ) = J ⊗ 1 + 1 ⊗ J + h(P1 ⊗ P2 − P2 ⊗ P1) . (60)

This is in fact the simplest possible quantum deformation ofU(e(2)). The antipode and
counit are as in the undeformed case.

5. Conclusion

We conclude that a theory of quantum deformations of theD = 2 Euclidean group seems
to be almost complete. All the Lie bialgebra structures one(2) can be quantized to Hopf
algebrasUq(e(2)). There is still one interesting unsolved problem, however. It is unknown
whether a universalR-matrix exists for the quantum deformation (4)–(8). In many cases the
contraction prescription can be applied to theR-matrix, giving rise to a finite result (usually
after some manipulation) [16, 17]. In case (A) discussed above the classicalr-matrix does
not exist and the same must be true for the universalR-matrix. In case (B) the situation is
unclear. Contraction of the universalR-matrix for Uq(sl(2)) leads to divergent expressions.
However, direct computation shows that, at least up to terms 1/κ10, an expression forR
can be found [18]. ThisR satisfies the conditionR1(a) = 1′(a)R for all the elementsa,
but it cannot satisfy the Yang-Baxter equation, as the classicalr-matrix satisfies only the
modified classical Yang-Baxter equation.
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