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Abstract. Lie bialgebra structures ar(2) are classified. For two Lie bialgebra structures which
are not coboundaries (i.e. those which are not determined by a classitix) we solve the
cocycle condition, find the Lie—Poisson brackets and obtain quantum group relations. There
is one to one correspondence between Lie bialgebra structure@pmand possible quantum
deformations ofU (e(2)) and E(2).

1. Introduction

Quantum deformations [1, 2] of th® = 2 Euclidean groupE(2) and its universal
enveloping algebrd/(e(2)) turn out to be a useful laboratory for the study of various
aspects of quantum groups [3-5]. It is one of the simplest examples of non-simple Lie
group and there is no canonical way to introduce its deformation. During the last five years
many approaches have been developed [6, 7] for the construction of such deformations.
The study ofE,(2) is interesting for its own sake (one can ask questions about how many
different quantum deformations exist in this case, about classizatl quantunk matrices,
differential calculi, representations, bicrossproduct structures, etc), but it is also useful in
order to understand properties of quantum deformationd ef 4 Poincaé group [8]. The
structure of D = 4 quantum groups are important to explore if one wishes to examine
possible implications of quantum groups ideas in physics. Interesting results have recently
been obtained in this direction, including a classification of possible deformations of the
D = 4 Poincaé group [9].

The aim of this paper is to argue that all the possible quantum deformatiah@ptan
be deduced from the analysis of Lie bialgebra structures(@n The paper is organized as
follows. In section 2 we review obtained so far in the literature quantum deformations of
E(2) andU(e(2)). In section 3 we present the classification of the Lie bialgebra structures
for e(2). We obtain one one-parameter family of Lie bialgebra structures and three separate
‘points’. Some of them turn out to be coboundaries (i.e. they are determined by classical
r-matrices) but some are not of that kind. We show that quantum deformations described in
section 2 give rise to all of them, except for one case. The missing quantum deformation of
E(2) turns out to be the simplest one, and will be discussed in section 4. There we describe
in detail how to derive Lie—Poisson brackets corresponding to Lie bialgebra structures
which are not coboundaries. In the new case of Lie Poisson brackets that have not yet
appeared in the literature, we obtain quantum group relations by changing Poisson brackets
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into commutators. We also calculate by duality the corresponding quantum deformation of
U(e(2)). In section 5 we conclude the paper with some final remarks.

In our presentation we will concentrate on the algebra and coalgebra structge@pf
andU,(e(2). It is a trivial exercise to guess what form of antipode and counit make them
Hopf algebras.

2. Quantum deformations of E(2) and U (e(2))

The first papers of interest were dedicated to quantum deformations of the enveloping algebra
U(e(2)) [3]. These deformations were obtained by applying the technique of contraction
from the standard deformation 6f(s/(2)). It turns out that there are two different quantum
contractions [10]:

(A) [Py, P-]=0 [J, Ps] = £P 6y
AN =J®1+1®J @)
A(Pr) =P ®q’+q7 ® P ®3)
(B) [P, P] =0 [J.P]=iP, 4
[J, P) = —%" sh% (5)
A =JRenr tehlhgy (6)
AP)=Pi®1+1® P @)
A(P) = P,@e /e e/ g p,. (8)

The deformation parameters ayen case (A) andc in case (B) and the classical limits
areq — 1 andxk — oo. It should perhaps be mentioned that till now there has been no
general theory of contractions of quantum groups. Some recent papers [11, 12] investigate
such contractions by analysing the Lie bialgebra level.

The quantum grouk, (2) has been discussed by many authors from different points of
view [3-6]. In order to fix notation let us introduce the following matrix representation of
elements ofE(2):

coqc) sin(c) a
g(c,a,b) = (— sin(c) coYc) b) . 9)
0 0 1

The matrix multiplication defines coproduct and antipodedpb andc. It turns out to be
convenient to introduce the complex notation

n=a+ib h=a—ib é°. (10)
The coproducts take the form

Ap=e"“@n+nel (11)

A =€®@i7+7®1 (12)

A(E) = °@d°. (13)
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There are many approaches for obtaining the quantum group relatioR$Zpf4—7]. They
lead to two sets of relations:

(A) ni = q°in (14)
e = g%d°n (15)
e = ¢%e“q (16)
or
. 1 .
(B) [€ n] = ~a- €°) (17)
_ 1 . _
[e", 7] = ;(eZ'C — €9 (18)
1
[n.7] = ;(ﬁ+n)~ (19)

The coproducts fop, 7 and & are given in (11)—(13).

It should be mentioned that the full Hopf algebra duality has been demonstrated for two
deformations of the groupE(2) and U (e(2)) so far discussed. For case (A) and)(#his
was done in [5] and for case (B) and’YBn [6].

There is yet another approach to the quantizatiorE¢@®). The starting point is the
non-standard (sometimes called Jordanian) quantum deformatiéh(sé€2)). Following
the general ideas it is possible to perform the contraction #1i3/(2)) to U, (e(2)) [13].
The new deformation parameter is called

©) [P P1=0 [ Pd=psh (20)
[J,P.]=—-P_ ch (21)
N
AP)=P, ®1+1® P, (22)
AW =J@er +elhitgy (23)
A(P)=P Qe ret/rgp_ . (24)

The bad feature of this deformation Gfle(2)) is that it is strictly speaking a deformation
of the complex algebra(2). This is seen in equations (20)—(24). The operatién= J,
P} = P is not a star operation in the Hopf algelva(e(2)).

3. Classification of Lie algebra structures fore(2)

It is possible to give a complete classification of Lie bialgebra structures(®r Let us
introduce thee(2) Lie algebra with generatorB;, P, and J satisfying the relations

[P1, P] =0 [J. Pl =iP; [J, P] = —iPy. (25)

In the classification of Lie-bialgebra structures fe(2) one should take into
account its invariance under the following transformations: J(B> J + u Py + vPy;
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(II) P; — cosp P + Sinﬂpz, P, —> — sin,3P1 + cosp Ps; (III) Py — AP, P, — AP,. The
complete list of Lie bialgebra structures consists of

51(P)=sPinAJ 01(P)) =sPo A J 81(J)=0 (26)
82(J) = PLA P, 82(P1) = 62(P2) =0 (27)
83(P2) = PLA P s3(J)=PLAJ 83(P1) =0 (28)
54(P) = —iPLA P, 84(P))=PiAPy  84(J)=PiAJ+iPsAJ. (29)

In (26) there is a one-paramete) amily of Lie bialgebras. Of the above four possibilities
only the last two are coboundaries with the classicalatrices

r3=J AP (30)

ra=JAPL+iJAP;. (31)

One could also write down a more general form of the classiealatrices by adding
termst Py A P>+ y(P1® P1+ P> ® P,). This generalization will however turn out to be
inessential if one deduces the form of Lie—Poisson brackets out dlVe find two Lie
bialgebra structures which are not a coboundary. It is interesting to stress that the case
of D = 2 is very particular one. It was shown that fé&r > 3 all the Lie bialgebra
structures of homogeneous groups built from space-time rotations (with arbitrary signature)
and translations are coboundaries [14].

It is easy to observe that the deformation (A) of section 2 correspondls {8) to 53
and (C) tos4. On the other hand, the Lie bialgeb¥adoes not yet have its quantum group
counterpart.

4. The missing quantum deformation of E(2)

When a Lie bialgebra is not a coboundary the computation of Lie—Poisson brackets is not
straightforward. The problem is to solve the cocycle equationforG — G A G, where
G and g respectively denote the Lie group and its Lie algebra [15]:

P (gh) = ¢(g) + gp(g™. (32)
Let us first discuss the case of the Lie bialgebra structurd he ‘initial’ conditions are
¢(l+ePr+--)=€esPLAT +--- (33)
d(L+ePr+--)=€sPoAJ +--- (34)
¢(l+eJ+--)=0 (35)

wheree is an infinitesimal parameter.
It is understood that the elements @@R) and E(2) are given in the three-dimensional
representation, and that

0 01 0 0O 0 -1 0
P1=i(0 0 O) P2=i(0 0 1) J=i(1 0 0) . (36)
0 0O 0 0O 0 0 O

The strategy is to find firsp on 1-parameter subgroups generatedPpyP, andJ. Let
$(€ ") = A@PLAJ +B@P,AJ+C(@PLAP,. (37)



Quantum E(2) groups and Lie bialgebra structures 2891

The cocycle equation (32) gives rise to the following set of algebraic equations:

2A(a) = A(2q) (38)
2B(a) = B(24) (39)
2C(a) — aA(a) = C(2a). (40)

We assume further that the functiodsa), B(a) and C(a) are analytic ina. Taking into
account (33) one obtains

_ 2
(ﬁ(eilapl) =1is (—aPl WA %P]_ A PZ) . (41)
Using the same methods one also calculates
i . b?
¢(e"bPz) =15 <—bP2 AT+ EP]_ A Pz) (42)
Py =0. (43)
The group elements af (2) can be parametrized by
cosc sinc a
g(a, b, c) = e 'hgribhede] — (—sinc cosc b) (44)
0 0 1

for which, using (32), one calculates
2 b2

¢(gla,b,c)) =is (—aPl ANJ—bP,ANJ + P A P2> . (45)

Since one knows from the general theory [15] that

{f. 8} =90 fOrg (46)
the Lie—Poisson brackets fat b, ¢ follow:

{a.b} = ig(a2 +b% (47)

{a, cosc} = ias sinc (48)

{b, cosc} = ibs sinc (49)
or, in complex notation

{n,n} = sny (50)

{1, €) = sné (51)

(. €) = sié". (52)

These expressions should be compared with (14)—(16).
Let us apply the same method to the second non-coboundary Lie bialgebra stégcture

(J)=PLAP; 82(P1) = 82(P2) = 0. (53)
Using the above-described technique once more one obtains
¢(gla,b,c)) =icPL A Ps. (54)
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After calculating Lie—Poisson brackets it turns out that the only non-vanishing bracket is

{n.n}=-2c. (55)
One can check explicitly that it in fact satisfies the required condition
{A(m), AM} =A({n, 1) =A(-20) = -2(c®1+1®c). (56)

Naive quantization seems to be applicable in this case, so that for the quantum relations
one obtains

[n, 7] =ihc [n.cl=[n.c]=0 (57)
where byh we denote the deformation (quantization) parameter. It is instructive to find by

duality the corresponding quantum deformationlbfe(2)). After brief computations one
arrives at the following structure:

(D) [J, ] =iP, [/, P] =—iP; [P, P] =0 (58)
AP)=P1R14+1Q® P, AP)=P®1+1Q P> (59)
AN =J®1+1®J+h(PL® P, — P,® P1). (60)

This is in fact the simplest possible quantum deformatiorU¢é(2)). The antipode and
counit are as in the undeformed case.

5. Conclusion

We conclude that a theory of quantum deformations of fhe- 2 Euclidean group seems
to be almost complete. All the Lie bialgebra structurese@) can be quantized to Hopf
algebrasU, (e(2)). There is still one interesting unsolved problem, however. It is unknown
whether a universak-matrix exists for the quantum deformation (4)—(8). In many cases the
contraction prescription can be applied to fRamatrix, giving rise to a finite result (usually
after some manipulation) [16, 17]. In case (A) discussed above the classitatrix does

not exist and the same must be true for the univeRsatatrix. In case (B) the situation is
unclear. Contraction of the universBtmatrix for U, (s!(2)) leads to divergent expressions.
However, direct computation shows that, at least up to terfrs®lLan expression foR

can be found [18]. Thig satisfies the conditio® A(a) = A’(a)R for all the elements:,

but it cannot satisfy the Yang-Baxter equation, as the classioatrix satisfies only the
modified classical Yang-Baxter equation.
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